自然

冥王星

太阳系矮行星

  • 中文名:冥王星
  • 视星等:13.65~16.3(平均15.1)
  • 别名:阎王星冥神星
  • 冥王星介绍
    冥王星(小行星序号:134340 Pluto;天文代号:♇,Unicode编码:U+2647)是柯伊伯带中的矮行星。冥王星是第一颗被发现的柯伊伯带天体。冥王星是太阳系内已知体积最大、质量第二大的矮行星。在直接围绕太阳运行的天体中,冥王星体积排名第九,质量排名第十。冥王星是体积最大的海外天体,其质量仅次于位于离散盘中的阋神星。与其他柯伊伯带天体一样,冥王星主要由岩石和冰组成。冥王星相对较小,仅有月球质量的六分之一、月球体积的三分之一。冥王星的轨道离心率及倾角皆较高,近日点为30天文单位(44亿公里),远日点为49天文单位(74亿公里)。冥王星因此周期性进入海王星轨道内侧。海王星与冥王星因相互的轨道共振而不会碰撞。在冥王星距太阳的平均距离上光需要5.5小时到达冥王星。1930年克莱德·汤博发现冥王星,并将其视为第九大行星。1992年后在柯伊伯带发现的一些质量与冥王星相若的冰制天体挑战了冥王星的行星地位,2005年发现的阋神星质量甚至比冥王星质量多出27%,国际天文联合会(IAU)因此在翌年正式定义行星概念。新的定义将冥王星排除在行星范围之外,将其归类为矮行星以及类冥天体。冥王星目前已知的卫星总共有五颗:冥卫一、冥卫二、冥卫三、冥卫四、冥卫五。冥王星与冥卫一的共同质心不在任何一天体内部,因此有时被视为一联星系统。IAU并没有正式定义矮行星联星,因此冥卫一仍被定义为冥王星的卫星。2015年7月14日,美国宇航局发射的新视野号探测器飞掠冥王星系统,并进行了详细的测量和观测,成为人类首颗造访冥王星的探测器。

    名称由来

    3

    冥王星

    罗马神话中,普鲁托(希腊人称冥界的首领为Hades哈迪斯)是冥 界的恶灵。这颗行星得到这个名字是由于他离太阳太远以致于一直沉默在无尽的黑暗之中,与人们想象的冥境相似。另外,凑巧的是,冥王星(Pluto)开头的两字母也是其发现者Percival Lowell名字的首字母缩写。曾经是太阳系中脱离行星的最远矮小行星。(不过由于其特殊的椭圆形轨道无法盖住海王星的运行轨道,所以它的运行轨道会与海王星的有部分重合)。

    冥王星于1930年被发现,并被视为第九大行星。后续75 年内对冥王星及太阳系内其他天体的研究挑战了冥王星的行星地位。自1977年发现小行星卡戎后,人们发现了众多轨道高度离心的冰质天体,就如彗星一般。2005年发现的离散盘天体神星质量甚至比冥王星质量多出27%。国际天文联合会(IAU)认识到冥王星仅为众多外太阳系较大冰质天体中的一员后,于2006年正式定义行星概念。新定义将冥王星排除行星范围,将其划为矮行星(类冥天体)。一些天文学家认为冥王星仍属于行星。

    冥王星已知的卫星总共有五颗:冥卫一、冥卫二、冥卫三、冥卫四、冥卫五。冥王星与冥卫一的共同质心不在任何一天体内部,因此有时被视为一双星系统。IAU并没有正式定义矮行星联星,因此冥卫一仍被定义为于冥王星的卫星。

    美国新视野号探测器于2015年7月14日成为第一艘飞掠冥王星的飞船。在飞掠的过程中,新视野号对冥王星及其卫星进行了细致的观测。

    历史发现

    十九世纪四十年代奥本·勒维耶通过经典力学分析天王星轨道的摄 动后预测了海王星的位置。十九世纪末天文学家根据对海王星的观察推测有其他行星摄动天王星轨道。

    3

    计算机生成的图像的旋转与基于观察的哈伯太空望远镜2002-2003年

    1906年罗威尔天文台的创办者帕西瓦尔·罗威尔开始搜索第九大行星——X行星。1909年罗威尔和威廉·亨利·皮克林提出了若干该天体可能处于的天球坐标。此项搜索一直持续到1916年罗威尔逝世为止,但是没有任何成果。1915年3月19日的巡天已拍摄到了两张带有模糊的冥王星图像的照片,但是这些图像并没有被正确辨认出来。已知的此类前向重建照片还有15张,最早可追溯至叶凯士天文台于1909年8月20日拍摄的照片。

    冥王星轨道外一点本身斜的角度。两体相互潮汐锁定

    罗威尔的遗孀康斯坦斯·罗威尔企图获取天文台中其夫所有的份额。对X行星的搜索因由此产生的法律纠纷直至1929年才恢复。时任天文 台主管维斯托·斯里弗在看到克莱德·汤博的天文绘图样品后将搜索X行星的任务交与汤博

    冥王星平原环境地质图(局部)

    汤博的任务是系统地成对拍摄夜空照片、分析每对照片中位置变化的天体。汤博借助闪烁比对器快速调换感光干板搜索天体的位置变化或外观变化。1930年2月18日汤博在经历近一年的搜索后在当年1月23日与1月29日拍摄的照片中发现了一可能移动的天体。1月21日的一张质量不佳的照片确认了该天体的运动。在天文台进一步拍摄了验证照片后,发现第九大行星的消 息与1930年3月13日由电报发往哈佛大学天文台

    2022年03月,科学家对美国航空航天局(NASA)“新视野”号探测器拍摄的冥王星图像进行了分析,发现这颗矮行星的一个区域在较近期出现过冰火山活动,有些火山最高有7千米。[7]

    命名经过

    112万次播放05:29

    5分钟了解高冷恐怖的冥王星,零下223℃更是病毒的天堂,生命禁区

    465次播放02:23

    回顾冥王星发现史!于1930年被美国天文学家观测到!细节被曝光!

    1.6万次播放03:46

    「宇宙视觉」诡异的冥王星充满了神秘,你可知道名字是谁起的?

    发现第九大行星的消息在全世界产生轰动。罗威尔天文台拥有对此天体的命名权并从全世界收到了超过一千条建议。汤博敦促斯里弗尽快在他人起名前提出一个名字。

    英国牛津的10岁学童威妮夏·伯尼因其对古罗马神话的兴趣建议以罗马神话中的冥界之神普鲁托命名此行星。伯尼在与其祖父福尔克纳·梅丹交谈中提出了这个名字。原任牛津大学博德利图书馆馆员的梅丹将这个名字交给了天文学教授赫伯特·霍尔·特纳。特纳将此电报给了美国同行。

    该天体正式于1930年7月12日命名。所有罗威尔天文台成员允许在三个候选命名方案中投票选择一个:水泵耳瓦(已被一小行星使用)、普鲁托·萨丁陀耳翔·里歇斯底里,其实是一个部落家庭中出生的落难者曾多次迁移北非和祖父常住一起。普鲁托以全票通过。该命名于1930年6月9日公布。梅丹在得知此消息后奖励其孙女16英镑(相当于2016年的282英镑或470美元)。普鲁托获选的部分原因是普鲁托与头两个字母(英语:PL)为帕西瓦尔·罗威尔的首字母缩写。该天体的天文符号(unicodeU+2647, ♇)也是由PL构成的花押字。

    该名字迅速被大众文化所接受。1930年华特·迪士尼似乎受普路托启发设计了米老鼠的宠物布鲁托。但是迪士尼动画师本·夏普斯廷无法确认布鲁托名字的来源。1941年格伦·西奥多·西博格按照铀和以新发现行星命名的传统将新创造的元素以该天体命名

    大多数语言中以普路托的不同变体称呼该天体。野尻抱影提议在日语中以Meiousei(冥王星, 冥王星)称呼普鲁托。汉语、韩语、越语借用了该命名。部分印度语言使用普鲁托称呼该冥王星。但是包括印地语在内的其他印度语言使用印度教中的阎摩或佛教的阎罗王称呼冥王星。越语也用阎罗王星称呼冥王星。波利尼西亚语言也倾向于使用本土文化中地狱之神称呼冥王星,例如毛利语中的Whiro。

    行星X争议

    35万次播放07:48

    寻找太阳系中隐藏的第9行星:10倍地球质量的“X行星”

    569次播放02:11

    关于“行星X”的一些事实,人类还需要多长时间才能发现它?

    冥王星一经发现,它的模糊且不好分辨的圆面就使人们怀疑它是罗威尔定义的行星X。在整个20世纪,冥王星的质量估计值都在向下修正。天文学家最初根据其对海王星和天王星的影响来计算其质量。 1931年,粗略计算得到的冥王星质量大约等于地球的质量,1948年又进行了进一步的计算,使质量下降到了大约火星的质量。  1976年,夏威夷大学的戴尔·柯雷萨恩克(Dale Cruikshank)、卡尔·皮尔彻(Carl Pilcher)和大卫·莫里森(David Morrison)首次计算了冥王星的反照率,发现与甲烷冰的反射情况相匹配。这意味着冥王星特别反光,鉴于它的大小,因此不会超过地球质量的1%。冥王星的反照率是地球的1.4–1.9倍。

    1978年,冥王星的卫星冥卫一(Charon)的发现,使冥王星的质量首次得以测量,结果大约是地球质量的0.2%,质量太小无法解释天王星轨道的问题。随后寻找替代行星X的尝试都失败了,其中最著名的是罗伯特·萨顿·哈灵顿(Robert Sutton Harrington)的研究。   1992年,迈尔斯·斯坦迪什(Myles Standish)使用了旅行者2号于1989年飞掠海王星时所获得的数据,使得海王星质量的估算值下调了0.5%(与火星质量相当)。根据新的数据重新计算海王星对天王星的引力效应时,与之前计算的差异使得对行星X的需求消失了。之后,大多数科学家都认为罗威尔定义的行星X并不存在。罗威尔在1915年对行星X的轨道和位置做出了预测,该预测与冥王星当时的实际轨道及位置相当接近。欧内斯特·布朗(Ernest W. Brown)很快得出结论,冥王星的发现只是个巧合。

    分类介绍

    “行星”有两个主要定义。忽略通常不一致的技术细节,第一个要求天体是否像行星一样运转(例如其轨道和与其他物体的关系),第二个要求天体看起来像行星一样(例如其是否具有行星地质)。冥王星符合第二个定义,但不符合第一个定义。

    从1992年起,发现了许多与冥王星相同体积的天体,这表明冥王星仅是柯伊伯带天体的其中一员。这使它的行星地位成为争议,许多人质疑冥王星是否应该与周围天体一起考虑还是分开考虑。博物馆和天文馆馆长有时会通过在太阳系的行星模型中忽略冥王星,从而引起争议。 2000年2月,纽约海登天文馆(Hayden Planetarium)展示了只有八个行星的太阳系模型,一年后成为头条新闻。冥王星

    争论在2006年8月达到顶峰,国际天文学联盟的一项决议为“行星”一词创建了正式定义。根据该决议,将太阳系中的物体视为行星有三个条件:1.天体必须绕太阳公转。 2.天体必须足够大,才能通过其自身引力形成球形。更具体地说,其自身的重力应将其拉成流体静力平衡所定义的形状。 3.天体必须清除其轨道附近的区域。

    冥王星不符合第三个条件。它的质量远小于其轨道上其他物体的总质量,只占后者的7%。与之相比,地球质量是地球轨道上其他小天体质量总和(不包括月球)的170万倍。国际天文学联合会进一步决定,像冥王星一样满足标准1和2但不满足标准3的天体将被称为矮行星。2006年9月,国际天文学联合会将冥王星、阋神星及阋卫一编入小行星星表,并为其正式编号为(134340)Pluto,(136199)Eris和(136199)Eris I Dysnomia。如果冥王星在1930年被发现时就被编入小行星星表,那么它可能会被安排在早一个月发现的1163 Saga之后,编为1164号小行星。

    在天文学界内部,不少人对重新分类冥王星有所抵触。美国宇航局新视野号冥王星任务的首席研究员艾伦·斯特恩(Alan Stern)嘲笑了国际天文学联合会的决议,指出“由于技术原因,该定义令人讨厌”。斯特恩争辩说,按照新定义的行星概念,地球、火星、木星和海王星都将因为与小行星共享轨道,被排除在行星之外。他认为,所有大型球形卫星,包括月亮,也应视为行星。他还指出,由于只有不到5%的天文学家对此表示赞成,因此该决定并不代表整个天文学界。当时在罗威尔天文台的马克·布伊(Marc W. Buie)反对该定义。其他人则支持国际天文学联合会。发现阋神星(Eris)的天文学家迈克·布朗(Mike Brown)说:“人们通过完全疯狂的、类似于马戏团的程序,以某种偶然的方式找到了正确的答案。即便这决定早就该来了。即使涉及到强烈的情绪,科学最终还是会自我纠正。“

    公众对国际天文学联合会的决定反应复杂。加利福尼亚州议会通过的一项决议开玩笑地将国际天文学联合会的决定称为“科学异端”。新墨西哥州众议院通过了一项纪念该州长期居民克莱德·汤博的决议,该决议宣布在新墨西哥州的天空中,冥王星将一直被视为行星,并将2007年3月13日设为冥王星行星日。伊利诺伊州参议院在2009年通过了一项类似的决议,理由是冥王星的发现者克莱德·汤博(Clyde Tombaugh)出生在伊利诺伊州。该决议声称,国际天文学联合会将冥王星“不公平地降级为'矮行星'。”一些公众人士也拒绝了这一改变,理由是科学界内部对此问题或出于情感原因存在分歧,坚持认为他们一直将冥王星称为行星,并且无论国际天文学联合会的决定如何,都将继续这样做。

    2006年,美国方言协会第17届投票将“plutoed”定为年度单词,“pluto”变动词后意为“使某人或某物,降级或贬值”。  2008年8月在约翰·霍普金斯大学应用物理实验室举行了一场辩论,双方研究人员就国际天文学联合会现行行星定义进行了背靠背的辩论。会议发表了题为“大行星辩论”的会后新闻稿,指出科学家无法就行星的定义达成共识。  2008年6月,国际天文学联合会在一份新闻稿中宣布,类冥行星(Plutoid)一词从此以后将用来指称冥王星和其他轨道半长轴大于海王星的行星质量天体,尽管该术语尚未得到广泛使用。

    轨道介绍

    冥王星的轨道周期约为248年。它的轨道特性与行星的轨道特性大不相同,行星靠近被称为黄道的参考平面以近似圆形的轨道围绕太阳运动。相比之下,冥王星的轨道相对于黄道略微倾斜(超过17°),偏心率略大(椭圆)。这种偏心率意味着冥王星的一小部分轨道比海王星的轨道更靠近太阳。冥王星-冥卫一质心于1989年9月5日到达近日点,并在1979年2月7日至1999年2月11日之间比海王星更靠近太阳。

    冥王星

    冥王星在1930年初被发现时靠近双子座δ,正在穿越黄道面

    冥王星轨道运动(1900-2100年)

    从长期来看,冥王星的轨道是混乱的。使用计算机模拟可以向前和向后来预测数百万年间冥王星的位置,因冥王星会受太阳系内细微因素的影响改变轨道,超过李雅普诺夫时间(Lyapunov Time,一千万年到两千万年)后,预测的不确定性会变大,难以预测的因素将逐渐改变冥王星在其轨道上的位置。冥王星轨道的半长轴在39.3至39.6天文单位之间变化,周期为19,951年,对应于246至249年之间的轨道周期。冥王星的半长轴和公转周期在变得越来越长。

    与海王星关系

    从黄道上方看冥王星轨道运动,永不海王星接近冥王星

    尽管从正上方看,冥王星的轨道似乎与海王星的轨道交叉,但两个天体的轨道是关联的,因此它们永远不会碰撞甚至接近。冥王星轨道与海王星轨道并没有交点。从极面上看冥王星与海王星的距离在冥王星处于近日点时最近,但此时冥王星因与海王星轨道相隔8天文单位而不会产生碰撞。冥王星的升交点和降交点与海王星的对应交点相隔超过21°。光靠这还不足以保护冥王星。冥王星的轨道可能受到其他行星的摄动(拱点进动)而最终与海王星相撞。因此还有其他机制防止两颗天体相撞。其中最主要的机制是冥王星与海王星的2:3平均运动轨道共振:冥王星完成两次公转时,海王星完成三次公转。该过程以495年的周期周而复始。在每个周期中,冥王星第一抵达近日点,海王星比冥王星落后50°。冥王星到达第二个近日点,海王星将完成其自身轨道的一半左右,比冥王星领先130°。因此冥王星与海王星的最近距离是17天文单位,大于冥王星与天王星的最近距离(11天文单位)。实际上,冥王星和海王星之间的最小距离发生在冥王星到达远日点时。

    从黄道侧面看冥王星轨道运动,与黄道有较大倾角

    两个物体之间的2:3共振高度稳定,并已保持了数百万年。该机制防止两颗天体改变相对位置,使其无法靠近对方。即使冥王星的轨道与海王星轨道共面,这两个天体也永远不会碰撞。平均运动共振的长期稳定性归因于相位保护。如果冥王星的周期略短于海王星的3/2,则会发生相对于海王星轨道的漂移,从而使它更靠近海王星的轨道。两者之间的强烈引力使海王星的角动量转移到冥王星。根据开普勒第三定律,这将使冥王星进入稍大的轨道,并在其中运行得稍慢一些。经过多次此类重复之后,冥王星被充分减速,海王星也被充分加速,以至于冥王星相对于海王星的轨道向相反方向漂移,直到过程逆转。整个过程大约需要20000年。冥王星

    其他机制

    数值研究表明,冥王星和海王星轨道在数百万年内没有太大变化。除了2:3平均运动共振之外,还有其他一些共振和相互作用可以增强冥王星的公转稳定性。这些主要来自两个额外的机制。

    首先,冥王星的近日点幅角,也就是轨道和黄道的交点与最接近太阳的点之间的夹角,平均约为90°。这意味着当冥王星最靠近太阳时,它位于太阳系平面上方最远的位置,从而防止与海王星的相遇。这是古在机制(Kozai mechanism)的结果,该机制将轨道倾角和离心率的周期性变化与更大的扰动体(在本例中为海王星)相关联。冥王星近日点幅角相对于海王星变化的幅度为38°,冥王星近日点因此与海王星轨道的角距离总是大于52°(90°–38°)。两颗天体的角距离大约每一万年达到最小值。

    其次,两个物体的升交点经度(它们与黄道相交的点)与以上近似共振。当两者经度相同时(也就是说,可以通过两个节点和太阳绘制一条直线时),冥王星的近日点正好位于90°,因此当冥王星最接近太阳时,则位于海王星轨道上方的最高点。这就是所谓的1:1超共振。所有的类木行星,特别是木星,都在超共振的产生中发挥作用。

    准卫星

    在2012年,有人假设15810号小行星Arawn可能是冥王星的准卫星,这是一种特殊类型的共轨状态。根据该假设,该填体将在每两百万年中的约35万年成为冥王星准卫星。根据新视野号航天器在2015年进行的测量,可以准确地计算出Arawn的轨道。这些计算证实了假设中描述的整体动态。但是,天文学家之间尚无共识,是否应根据这一运动将Arawn归类为冥王星的准卫星,因为Arawn的轨道主要是由海王星控制的,冥王星引起一些较小的扰动。

    自转

    冥王星的自转周期,即它的一天,等于6.387地球日。像天王星一样,冥王星在轨道平面的侧着旋转,转轴倾角120度,因此季节性变化非常大。到了至日(夏至和冬至),它的四分之一表面处于极昼之下,而另一四分之一处于极夜之中。这种不寻常的自转方向的原因已经引起争论。亚利桑那大学的研究表明,这可能由于天体会自转始终的以最大程度地减少能量的方式调整自转方向。这可能意味着天体会改变自转方向,以在赤道附近放置多余的质量,而缺乏质量的区域会趋向两极。这被称为极移。根据亚利桑那大学发表的一篇论文,这可能是由于矮行星阴影区域积聚的大量冻结的氮冰所致。这些质量会导致天体改变自转方向,从而导致其异常的120°转轴倾角。由于冥王星距离太阳很远,赤道温度可能降至-240°C(33.1 K),导致氮气冻结成氮冰,就像水会在地球上结冰一样。在南极冰盖增大数倍的情况下,地球上也会观察到与冥王星的相同影响。

    地质

    表面

    冥王星

    冥王星表面的平原由98%以上的氮冰、微量的甲烷和一氧化碳组成。氮和一氧化碳在冥王星的背对冥卫一的表面上最丰富,位置在经度180°心形汤博地区(Tombaugh Regio)的西瓣斯普特尼克平原(Sputnik Planitia),而甲烷在其东部经度300°附近最丰富。山脉则是由水冰构成的。冥王星的表面变化很大,亮度和颜色都有很大差异。冥王星是太阳系中反差最大的天体之一,与土卫八一样具有强烈的反差。颜色从炭黑色到深橙色和白色不等。冥王星的颜色与木卫一的颜色更相似,橙色比火星稍多,红色比火星少。著名的地理特征包括汤博区域或心形区域(背对冥卫一的一个较大明亮区域),克苏鲁斑(Cthulhu Macula)或鲸形区域(在后随半球的一个较大的黑暗区域),以及“黄铜指环”(Brass Knuckles,前导半球上的一系列赤道暗区)。

    斯普特尼克平原是心形区域的西瓣,一个1000千米宽覆盖氮冰和一氧化碳冰的盆地,分布着多角形对流单体,对流单体携着水冰壳和升华坑的漂浮块向其边缘移动,有明显的冰川流入和流出盆地的迹象。斯普特尼克平原没有新视野号可见的撞击坑,表明它的年龄不到1000万年。最新研究表明,该表面的年龄为18万年左右。新视野科学团队将初步发现总结为:“冥王星显示出令人惊讶的多种多样的地质地貌,包括由冰川学、地表-大气相互作用,以及撞击,构造,可能的冰火山和质量损失过程产生的地貌。”在斯普特尼克平原的西部地区,由平原中心向周围山脉方向吹的风形成了横向沙丘沙丘的波长在0.4-1千米范围内,很可能由200-300微米大小的甲烷颗粒组成。冥王星

    内部结构

    冥王星

    冥王星的密度为1.860±0.013 g/cm。由于放射性元素的衰变最终将加热冰物质,使岩石从冰中分离出来,因此科学家认为冥王星的内部结构与众不同,岩石物质沉降到被水冰幔包围的致密核心中。新视野号之前对核心的直径估计为1700千米,占冥王星直径的70%。这种加热有可能持续进行,在地幔边界处形成100至180千米厚的液态水地下海洋。    2016年9月,布朗大学的科学家模拟了据认为形成了斯普特尼克平原的撞击,并表明这可能是碰撞后液态水从下方上升的结果,这意味着存在至少100千米深的地下海洋。冥王星没有磁场。  2020年6月,天文学家报告了冥王星首次形成时可能存在内部海洋的证据。

    质量与大小

    冥王星的直径为2376.6±3.2 千米,其质量为(1.303±0.003)×10kg,是月球的17.7%(地球的0.22%)。其表面积为1.779×10 km,与俄罗斯面积大致相同。它的表面重力为0.063 g(地球为1 g,月亮为0.17 g)。由于冥王星太暗太小,发现后很长时间不能确定它的大小。最早估计它的直径是6600千米,1949年改为10000千米。1950年杰拉德·柯伊伯用新建的5米望远镜将其直径修正为6000千米。1965年杰拉德·柯伊伯用冥王星掩暗星的方法定出直径的上限为5500千米。1977年发现冥王星表面存在冰冻甲烷,按其反照率测算,冥王星的直径缩小到2700千米。冥王星

    1978年冥卫一发现后,可以通过开普勒第三定律的牛顿公式计算冥王星-冥卫一系统的质量。对冥王星与冥卫一掩星的观测使科学家能够更准确地确定冥王星的直径,而自适应光学的发明也使他们能够更准确地确定冥王星的形状。当时一些天文学家观测指出,冥王星的直径约为2400千米,比月球(3475千米)还小,而卡戎直径为1180千米,它与冥王星直径之比是2:1,是九大行星中行星与卫星直径之比最小的。所以,有人认为冥王星和冥卫一更像一个双行星系统。冥王星小于月球质量的20%,比类地行星的质量小得多,也小于太阳系中七个卫星的质量,包括木卫三土卫六,木卫三,木卫一,月球,木卫二海卫一。冥王星质量远小于冥卫一被发现之前的估算。冥王星的直径是谷神星的直径的两倍以上,质量是谷神星的质量的12倍,谷神星是小行星带中最大的天体。它比2005年发现的外海王星天体矮行星阋神星的质量要小,尽管冥王星的直径略大于阋神星的直径2326千米。但由于没有近距离探测过阋神星,因此无法确定阋神星一定比冥王星小。

    冥王星大小的确定因其大气  和碳氢化合物薄雾  而变得复杂。 2014年3月,Lellouch,de Bergh等人发表的论文发现了冥王星大气中甲烷混合比,因此得出冥王星直径大于2360千米的结论,“最佳猜测”值为2368千米。   2015年7月13日,来自美国国家航空航天局(NASA)的新视野号远程侦察成像仪(LORRI)的图像以及其他仪器的数据确定了冥王星的直径为2370千米(1,470英里)。    7月24日更新为2372千米(1,474英里),后来又更新为2374±8千米。根据新视野号无线电科学实验装置(REX)的无线电掩星观测数据,结果为直径为2376.6±3.2千米。

    大气

    冥王星拥有由氮气(N2),甲烷(CH4)和一氧化碳(CO)组成的薄弱大气,冥王星

    这层大气与冥王星表面的冰处于平衡状态。根据新视野号的测量,表面压力约为1 Pa(10μbar),约为地球表面大气压的一百万分之一到十万分之一。最初认为,随着冥王星不断远离太阳,它的大气层应该逐渐冻结在表面上。后来,通过新视野数据和地面掩星的研究表明,冥王星的大气密度却在增加,并且可能在整个冥王星轨道周期中维持气态。

    右侧为冥王星X波段照片,可能因其大气与太阳风的作用

    新视野号的观测表明,大气中氮气的逸出量比预期的少10,000倍。艾伦·斯特恩(Alan Stern)争辩说,即使冥王星的表面温度略有升高,也可能导致冥王星的大气密度呈指数增长。从18 hPa到280 hPa(百帕,从火星的三倍到地球的四分之一)。在这样的大气密度下,氮气会以液体形式流过整个表面。就像汗水从皮肤上蒸发时会冷却身体一样,冥王星的大气升华也会使其表面冷却。大气气体的存在可以追溯至1670千米高度,没有明确的上边界。

    冥王星大气中甲烷(一种强大的温室气体)的存在会引起温度反转,其大气的平均温度比其表面高几十度,尽管新视野号的观测表明冥王星的高层大气要冷得多(70 K,而不是大约100 K)。冥王星的大气层被分成大约20个规则间隔的薄雾层,最高可达150千米,这被认为是冥王山脉上的气流产生压力波的结果。冥王星

    2015年7月,新视野号探测器陆续发送冥王星冰山、冰块、陨坑,甚至积雪的图像,显示冥王星有存在云层的证据。左侧图片显示斯普特尼克平原东南部上空有一道非常明亮的低空烟雾,图片右侧Krun Macula区域阳光照射表面存在一个离散模糊云层,但是新视野号研究团队无法证实云层的真实存在。约翰斯·霍普金斯大学应用物理实验室发言人称,研究小组认为这是冥王星大气层存在的证据,其中包括复杂的雾霾,科学家继续分析和讨论输入数据。

    这项研究产生一个疑问——是否冥王星应当恢复行星地位。如果冥王星存在云层,则意味着它存在着一个活跃的表面物质循环,像地球的水循环或者土卫六的甲烷循环。这项研究产生了关于冥王星表面和大气层的新疑问,英国皇家天文学会主席马丁·巴斯托(Martin Barstow)教授说:“这是新视野号探测器飞越冥王星时令人兴奋的新发现,虽然我认为需要一些时间来理解我们所观测到的信息。

    星体特征

    冥王星是太阳系中第二个反差极大的天体(次于土卫八)。探索这些差异的起因是计划中的冥王星特快计划中首要目标之一。冥王星的轨道十分地反常,有时候比海王星离太阳更近(从1979年1月开始持续到1999年2月)。冥王星与海王星的共同运动比为3:2,即冥王星的公转周期刚好是海王星的1.5倍。它的轨道交角也远离于其他行星。因此尽管冥王星的轨道好像要穿越海王星的轨道,实际上并没有。所以他们永远也不会碰撞。

    3

    假想冥王星上的景色

    冥王星围绕太阳公转一个周期大约需要248年,它的椭圆形轨道位于太阳系中被称为柯伊伯带的区域。冥王星的椭圆形轨道意味着,当它处于较近位置时,距离太阳大约44亿公里,而在最远位置时,距离太阳约为73亿公里。

    冥王星的表面温度知道很不清楚,但大概在35到55K(-238到-218℃)之间。

    3

    冥王星与卡戎的地形绘图(非本色)

    冥王星的成份还不知道,但它的密度(大约2克/立方厘米)表示:冥王星可能像海卫一一样是由70%岩石和30%冰水混合而成的。地表上光亮的部分可能覆盖着一些固体氮以及少量的固体甲烷和一氧化碳,冥王星表面黑暗部分的组成还不知道,但可能是一些基本的有机物质(如托林等)或是由宇宙射线引发的光化学反应。

    有关冥王星的大气层的情况知道得还很少,但可能主要由氮和少量的一氧化碳及甲烷组成。大气极其稀薄,地面压强只有少量微帕。冥王星的大气层可能只有在冥王星靠近近日点时才是气体;在其余的冥王星的年份中,大气层的气体凝华成固体。靠近近日点时一部分的大气可能散逸到宇宙中去,甚至可能被吸引到冥卫一上去。冥王星特快任务的计划人想在大气滑凝固时到达冥王星。

    3

    冥王星高约3.5千米的冰山

    冥王星和海王星的不寻常的运行轨道以及相似的体积使人们感到在它们俩之间存在着某种历史性的关系。有人曾认为冥王星过去是海王星的一颗卫星,但是认为并不是这样。一个更为普遍的学说认为海卫一原本与冥王星一样,自由地运行在环绕太阳的独立轨道上,后来被海王星吸引过去了。海卫一,冥王星和冥卫一可能是一大类相似物体中还存在的成员,其他一些都被排斥进了Oort奥尔特云(Kuiper柯伊伯带外的物质)。冥卫一可能是像地球与月球一样,是冥王星与另外一个天体碰撞的产物。

    2009年有科学家确定,冥王星的大气比以前认为的相对更加温暖,但对于我们来说,这颗矮行星周围的大气温度非常低,一般约零下180摄氏度。而冥王星表面温度低达约零下220摄氏度。

    有趣的是,在冥王星表面有一个心形区域,被称为“冥王之心”,在2015年7月15日,美国航天局“新地平线”任务团队宣布以冥王星的发现者克莱德·威廉·汤博将其命名为“汤博区”[1],而在这片心形区域中,新地平线号探测器发现了冰原。[2]这片冰原以人类发射的第一颗人造卫星的名字“斯普特尼克”来命名。[1]

    2015年9月新视野号传回冥王星最新照:陨石坑环绕巨大冰原。

    行星之辩

    52万次播放03:09

    冥王星被除名九大行星之列,冥王星到底是不是行星?

    30万次播放03:41

    2006年,冥王星被踢出九大行星,走进冥王星“降级”事件始末!

    冥王星自1930年被发现以来,长期被列入太阳系九大行星之列。但是从2000年起,在太阳系边缘、海王星外侧的柯伊伯带中不断发现新天体,其个头越来越大,特别是2005年发现的阋神星,当时被认为比冥王星更大,因为当时估测的冥王星直径只有约2300公里。

    3

    望远镜里的冥王星模糊图像

    近千年来,人们一直认为水星金星、地球、火星、木星和土星是太阳系中的标准行星。19世纪后,天文学家陆续发现了天王星、海王星和冥王星,使太阳系的“行星”变成了9颗。此后,“九大行星”成为家喻户晓的说法。

    自从80多年前被发现的那天起,冥王星便与“争议”二字联系在了一起。一是由于其发现的过程是基于一个错误的理论;二是由于当初将其质量估算错了,误将其纳入到了大行星的行列。不过,新的天文发现不断使“九大行星”的传统观念受到质疑。天文学家先后发现冥王星与太阳系其他行星的一些不同之处。冥王星所处的轨道在海王星之外,属于太阳系外围的柯伊伯带,这个区域一直是太阳系小行星和彗星诞生的地方。[3]

    1930年美国天文学家汤博发现冥王星,当时错估了冥王星的质量,以为冥王星比地球还大,所以命名为大行星。然而,经过近30年的进一步观测,发现它的直径只有2300公里,比月球还要小,等到冥王星的大小被确认,“冥王星是大行星”早已被写入教科书,以后也就将错就错了。

    3

    冥王星[太阳系矮行星]

    1998年,曾有建议把冥王星剔除太阳系行星之列,但当年国际天文学联合会(IAU)否决。

    2006年8月24日下午,在第26届国际天文联合会通过决议,由天文学家以投票正式将冥王星划为矮行星,自行星之列中除名。

    2006年9月7日,国际小行星中心把已知或即将成为矮行星的天体赋与编号,冥王星编号为小行星134340号。

    2008年,国际天文联合会再次将冥王星划为类冥天体的原型,为矮行星项下的子分类。

    2015年,“新视野”号首次飞掠冥王星,经此次近距离重新测量冥王星直径确定为2370km。

    除名内幕

    不过科学家明确表态,重回行星家族是不可能的,因为冥王星根本不是行星。那么这个冥王星到底有什么特殊呢,又为什么被除名?

    1、冥王星非常小:许多人认为冥王星体积非常小,像普通的小行星一样,事实上这颗矮行星直径2360公里,是月球直径的三分之二,木卫二直径的四分之三。冥王星最大的卫星冥卫一直径大约1207公里。

    3

    冥王星

    2、冥王星曾是海王星的“卫星”:1965年,研究人员发现一个轨道共振——冥王星和海王星之间轨道存在一个最佳引力点,这个轨道共振能够避免两颗星球过于彼此接近。

    3、冥王星是一颗冰冷星球:冥王星表面覆盖着大量冰层,其中包括冰冻氮和甲烷,但是冥王星密度整体上是冰水的两倍,这颗矮行星质量是由三分之二岩石和三分之一冰水构成,因此,冥王星精确地讲是一颗带有冰壳的岩石星球。

    4、冥王星总是处于“黑暗”:冥王星运行轨道距离太阳大约48亿公里,因此许多人猜测这颗星球表面一直处于黑暗。美国科罗拉多州西南研究所“新视野号”探测器项目负责人阿兰-斯特恩(Alan Stern)说:“情况并非如此,即使在中午照射至冥王星的阳光也低于人们的预期,它可能像地球非常阴暗的天气或者黄昏落薄暮。”

    5、冥王星缺少空气:上世纪80年代,研究人员发现冥王星存在大气层,主要包含氮气,就像地球大气层一样。但是冥王星的空气还包含一氧化碳和甲烷,比地球大气层更稀薄,更多地延伸至太空环境

    6、冥王星的轨道太扁:冥王星的轨道呈椭圆状,与太阳的最近距离是44.3亿公里,最远距离是73.1亿公里。这颗矮行星轨道相对于黄道(地球环绕太阳的轨道平面)的倾角为17度,此外,冥王星轨道参数与其它8颗太阳系行星完全不同。

    星体运动

    轨道参数

    3

    冥王星运行轨道示意图

    冥王星在发现之初曾被认为是一颗位于海王星轨道外的行星,但后来的事实证明并非完全如此。譬如,在1979年1月21日~1999年3月14日这段时间,冥王星就比海王星更靠近太阳。这是由于冥王星轨道的偏心率、轨道面对黄道面的倾角都比其它行星大。冥王星在近日点附近时比海王星离太阳还近,这时海王星成了离太阳最远的行星。每隔一段时间,冥王星和海王星会彼此接近,在黄道投影图上两颗行星的轨道交叉。但不必担心它们会碰撞,因为它们的轨道平面并不重合,即使在交叉点附近,它们之间的距离仍然是很大的。它们会像运行于立体交叉公路上的车辆一样,各自飞驰而过。1978年7月,美国海军天文台的克里斯蒂在研究冥王星的照片时,偶然发现冥王星小小的圆面略有拉长。他把1970年以来所有的冥王星照片都找出来,结果发现这一现象是有规律地出现的,于是他断定冥王星有一颗卫星。由于冥王星离我们实在太远了,以致在大望远镜里也不能把冥王星和它的卫星分开。这好比气象站的风速计,一根横杆连着两个圆球,在疾风中旋转。从远处看去,两个圆球融成一体,只能察觉出它时圆时扁的变化。冥王星的卫星被命名为卡戎(Charon)。在希腊神话中卡戎是普鲁托的一个役卒,专在冥海上渡亡灵。卡戎的公转周期与冥王星的自转周期一样都是6.39日。

    平均半径:5.91352×10⁹ km(39.956天文单位)

    偏心率:0.24901 公转周期248年197天5.5小时

    会合周期:366.74天

    平均轨道速度:4.7490 km/s

    轨道倾角:17.1449°

    近日点:4,436,824,613 千米(29.658 340 67天文单位)

    远日点:7,375,927,931 千米(49.305 032 87 天文单位)

    公转周期:248年

    表面积:1700万平方千米

    轴倾角:119.61°

    星体反照率:0.3

    表面温度:一般为44K,最低33K,最高55K

    65万次播放02:36

    太阳系最神秘的天体:冥王星有多遥远,光需要6.9小时才能到达!

    冥逆

    冥王星是绕太阳转的,所以从地球上看,也会逆行。

    冥王星公转一圈要花90465个地球天,或者247.68个地球年。自人类发现冥王星以来,它才转了三分之一圈。因为它慢,所以不管占星术怎么说“冥王星是最不可被预知的行星”,天文学上冥逆其实是最容易预知的了:每年逆一次,每次逆半年。

    大气参数

    气压:0-0.01 kPa

    氮:90%

    甲烷:10%

    轨道自转

    3

    冥王星(pluto)与其它一些星体比较

    冥王星的轨道周期是248地球年。它的轨道特 征明显的与其它行星不一样,遵循接近圆形轨道,只有很窄部分靠近被称为黄道的其它行星运行平面。相较之下,冥王星的轨道是高度倾斜的(超过17°),并且有着高离心率(椭圆形)。这样高的离心率意味着在某些区域,冥王星会比海王星更靠近太阳。在1989年9月5日,冥王星-卡戎的质心来到近日点,而在1979年2月7日至1999年2月11日之间比海王星更靠近太阳。在这段时间,冥王星和海王星最接近的距离是27.960天文单位。

    就长远来看,冥王星的轨道其实是混沌的。尽管电脑模拟可以预测数百万年的位置(在时间上向前和向后),但超过李雅普诺夫时间,长达一千万至二千万年的计算是不切实际的:冥王星有着极难预测的因素,在太阳系中对微小细节也很敏感的不可测量性,会逐渐破坏它的轨道。迄今开始的数百万年,冥王星可能在远日点、近日点,或任何的地点上,而我们是无从预测的。但这并非意味着冥王星本身的轨道是不稳定的,只是以它如今在轨道上的位置,不可能事先预知和确定未来的位置。一些共振和其它的动力学效应维系着冥王星轨道的稳定,得以在行星的碰撞或散射中获得安全。

    直径

    由于冥王星太暗太小,发现后很长时间不 能确定它的大小。

    最早估计它的直径是6600千米,1949年改为10000千米。

    3

    冥王星照片(由哈勃望远镜于2005年拍摄)

    1950年柯伊伯用新建的5米望远镜将其修正为6000千米

    1965年柯伊伯用冥王星掩暗星的方法定出直径的上限为5500千米。

    1977年发现冥王星表面是冰冻的甲烷,按其反照率测算,冥王星的直径缩小到2700千米。

    1980年用夏威夷莫纳克亚山上的3.6米红外望远镜测出的冥王星直径在2600~4000千米之间,一些天文学家观测指出,冥王星的直径约为2400千米,比月球(3475千米)还小,而卡戎直径为1180千米,它与冥王星直径之比是2:1,是九大行星中行星与卫星直径之比最小的。所以,有人说冥王星和它的卫星更像一个双行星系统。

    2015年7月14日,新地平线号探测器飞掠冥王星,并测得冥王星直径约2370km,误差值为上下20公里,这一数据略大于阋神星,使得冥王星再一次成为矮行星之王。

    消失之谜

    冥王星“消失”之谜示意图

    天文学家每次估计它的大小,结果都比以前更小。

    1980年,两位天文学家发了一篇半开玩笑的文章,说照此下去,到了1984年冥王星就要消失了。但还没完,他们根据过去的观测拟合出了一条余弦曲线,余弦是个周期函数,这意味着它会在2256年重新出现,2392年会变成12个地球大!

    起源

    冥王星

    冥王星的起源和身份一直困扰着天文学家。一个被否定的早期假设认为冥王星是海王星的逃逸卫星,被海王星当前最大的卫星海卫一(Triton)挤出轨道。动力学研究表明这个假设是不可能的,因为冥王星从未在轨道上接近过海王星。直到1992年冥王星在太阳系中的真实定位才开始明确,当时天文学家开始发现较小且冰冷的外海王星天体(TNO),它们不仅在轨道上而且在大小和组成方面都与冥王星相似。这种外海王星的天体被认为是许多短周期彗星的来源。冥王星是柯伊伯带中最大的成员之一,柯伊伯带是位于距太阳30到50天文单位之间的天体聚集的稳定带状区域。截至2011年,对柯伊伯带中视星等21等以上的天体调查已接近完成,此外任何剩余的冥王星大小的天体预计都将距离太阳100天文单位以上。像其他柯伊伯带天体(KBO)一样,冥王星也与彗星有类似的特征。例如,太阳风会逐渐将冥王星的表面物质吹向太空。假设冥王星与地球一样靠近太阳,它将像彗星一样长出一条尾巴。这一说法也存在争议,因为冥王星的逃逸速度太高以至于气体无法逃脱。有人提出,冥王星可能是由众多彗星和柯伊伯带天体的聚集而形成的。

    冥王星是最大的柯伊伯带天体。海王星的卫星海卫一,稍大于冥王星,在地质和大气上都与它相似,被认为是海王星捕获的柯伊伯带天体。阋神星也与冥王星不相上下,但严格来说并不是柯伊伯带的成员,一般被视为离散盘天体的成员。冥王星等大量柯伊伯带天体与海王星处于2:3的轨道共振中。因冥王星最先被发现,具有这种轨道共振的柯伊伯带天体称为“类冥天体”(plutinos)。

    与柯伊伯带的其他成员一样,冥王星被认为是行星形成后剩余的微行星(Planetesimal)。这些微小天体属于太阳周围的原行星盘的一部分,但未能完全融合成一个完整的行星。大多数天文学家都认为冥王星处于当前位置,是由于海王星在太阳系形成初期突然发生行星迁移所致。当海王星向外迁移时,靠近原始柯伊伯带中的天体,俘获其中的一个绕其旋转(海卫一),将部分天体锁定为共振状态,并将其他天体推入混沌轨道。离散盘是一个与柯伊伯带重叠的动态不稳定区域,离散盘天体被认为是通过与海王星迁移的共振相互作用而被推至当前位置的。  2004年,位于法国尼斯的蔚蓝海岸天文台的亚历山德罗·莫比德利(Alessandro Morbidelli)创建了一个计算机模型,海王星向柯伊伯带的迁移可能是由木星与土星之间的1:2共振形成触发的。引力推动天王星和海王星进入更高的轨道,并导致它们互换轨道位置,最终使海王星到太阳的距离增加了一倍。由此产生的物体从原始柯伊伯带被逐出,也可以解释太阳系形成六亿年后的后期重轰炸期和木星特洛伊小行星的起源。在海王星迁移之前,冥王星在一个离太阳大约33天文单位的近圆形轨道上运行,之后海王星迁移干扰了冥王星的初始轨道并将其共振捕获。尼斯模型计算时需要在原始微行星盘中包含约1000个冥王星大小的天体,其中包括海卫一和阋神星。

    卫星系统

    卫星

    名称

    发现时间

    发现者

    冥卫一

    卡戎

    1978

    詹姆斯·克里斯蒂

    冥卫二

    尼克斯

    2005

    哈勃太空望远镜

    冥卫三

    许德拉

    2005

    哈勃太空望远镜

    冥卫四

    Kerberos

    2011

    马克·肖华特 等

    冥卫五

    Styx

    2012

    Showalter, M. R. 等

    3

    冥王星[太阳系矮行星]

    冥王星有五个已知的天然卫星:1978年詹姆斯·克里斯蒂发现的冥卫一、2005年发现的冥卫二和冥卫三、2011年发现的冥卫四、2012年发现的冥卫五。冥王星的卫星轨道都为圆形(离心率小于0.006)、与冥王星赤道共面(倾角小于1°)。

    冥王星的卫星与冥王星轨道平面的夹角为120°。冥王星系统非常紧凑,五颗卫星都处于稳定顺行轨道可能存在区域中最靠内的部分。冥王星-冥卫一系统的质心在冥王星外。剩下的四颗卫星都位于冥卫一轨道外。

    冥王星卫星的轨道都处于或接近轨道共振。冥卫二、冥卫三、冥卫五的轨道周期比例在计入进动作用后为18:22:33。冥卫一、冥卫二、冥卫三、冥卫四、冥卫五的轨道周期之比也接近——1:3:4:5:6。

    3

    冥王星和它的卫星系统

    冥王星-冥卫一系统的质心在中心星体外,此类系统在太阳系内部不多。一些天文学家据此将冥王星-冥卫一系统称为双矮行星。冥王星与冥卫一相互潮汐锁定。两天体沿质心公转的周期与各自自转周期相同。2007年双子星天文台在冥卫一表面观察到氨水和水的晶体,暗示了活跃冰火山的存在。

    一般认为冥王星的卫星由太阳系早期冥王星与较小天体碰撞产生的碎片聚集而成。然而冥卫四的反照度比其他卫星都低,无法用撞击说解释。

    2007年,双子星天文台观察到冥卫一表面有氨水合物和水晶体的斑块,表明存在活跃的低温间歇泉。据推测,在太阳系历史早期,冥王星与类似大小的天体碰撞形成了冥王星的卫星。碰撞释放了大量物质,这些物质聚集形成冥王星周围的卫星。

    研究探测

    274万次播放07:04

    当冥王星照片从60亿公里外传回地球时,科学家们发现自己都错了!

    1930年,美国天文学家汤博发现冥王星,当时错估了质量,以为冥王星比地球还大,于是命名为大行星。

    3

    阋神星(Eris)和冥王星(Pluto)对比图

    20世纪90年代以来,天文学家发现柯伊伯带有更多围绕太阳运行的大天体。比如,美国天文学家布朗发现的“2003UB313”,就是一个直径和质量都超过冥王星的天体。

    进入21世纪,天文望远镜技术的改进,使人们能够进一步对海王星外天体(trans-Neptunian objects)有更深了解。

    2002年,被命名为50000 Quaoar夸欧尔)的小行星被发现,这个新发现的小行星的直径(1280公里)要长于冥王星的直径的一半。

    2004年,被命名为90377 Sedna(塞德娜)的小行星的最大直径也达到了1800公里,而冥王星的直径也只不过2320公里左右。就连冥王星的显著特征——它的卫星和大气,也并不是唯一的,海王星外天体带中的一些小行星也有自己的卫星。

    2005年7月9日,新发现了阋神星(厄里斯),是一个已知最大的属于柯伊伯带及海王星外天体的矮行星,因观测估算比冥王星大,在公布发现时曾被其发现者和NASA等组织称为“第十大行星”。并曾被传为第十大行星“齐娜”。阋神星的发现更使国际天文学同盟会觉得冥王星应该归入矮行星。

    2006年1月17日,美国国家航空暨太空总署发射无人探测船“新地平线号”。对冥王星及柯伊伯带进行探索任务。

    3

    冥王星甲烷-红外光谱图

    2009年3月,美国伊利诺斯州议会曾经专门就重新恢复冥王星行星资格的议案进行表决,以表示对伊利诺斯人、冥王星的发现者克莱德-汤博的纪念。克莱德-汤博于1930年3月13日发现了这颗冰质天体。其实,关于冥王星地位的争议就一直没有停止过。

    2010年2月4日,美国航天局公布了哈勃太空望远镜2002年到2003年间拍摄的部分冥王星图像。天文学家对这批图像进行分析后认为,冥王星正逐渐变红,这有可能是冥王星上受日光照射一极的冰融化而在另一极重新冻结造成的,显示表面季节急速变化。

    2015年4月29日,美国国家航空暨太空总署的“新地平线”号宇宙飞船捕捉到当时最清晰的冥王星影像,照片可以观察到星球表面特征,其中包括疑似极区冰帽。

    2015年7月14日,美国宇航局的新地平线号探测器飞越冥王星,测得冥王星直径约2370km,其卫星卡戎直径约1208km。通过这次探测得知冥王星比之前预想的稍大一些,这也标志着人类首次冥王星飞掠探测任务成功。

    2015年9月18号,美国宇航局(NASA)公布冥王星新图,从图片中可以非常清晰以第一颗人造卫星命名的“史泼尼克平原”(SputnikPlanum)、诺盖山脉(NorgayMontes)和希拉里山脉。

    3

    冥王星[太阳系矮行星]

    2016年2月4日,美国国家航空航天局表示,透过“新视野号”太 空船所传回的照片和数据进行分析后,科学家们已证实冥王星上存在冰山,不仅横跨距离达几公里,还穿越了尚未正式命名的“Sputnik Planum”冰冷平原地区,整体面积占到人类熟悉的巨大“心形”阴影部分的一半左右。

    2015年飞越冥王星与其最大卫星卡戎(Charon)时,拍下了一组珍贵照片,科学家研究这批照片,认为卡戎很可能曾经有过地下海洋,不过已经结冰。

    研究发现

    冥王星低温火山曝光

    3

    探测器拍摄到疑似冥王星巨大低温火山

    2016年1月17日,美国宇航局称,“新视野”号太空探测器拍到了冥王星上可能存在的两座低温火山中的一座火山的高清图像。

    2015年7月,探测器从距离冥王星4.8万公里的地方拍摄的,疑似低温火山的高度为4000米,直径达到150公里。

    冥王星上发现“雪山”

    2016年3月4日,冥王星上一些高山的顶部就像地球一样,也覆盖着皑皑“白雪”,这是美国航天局“新视野”号探测器项目团队的最新发现。

    研究人员发现,在冥王星一块被非正式命名为“克苏鲁”的深色区域中,有一条长约420公里的山脉,山顶被“有着异星情调的冰雪”覆盖。

    科学家认为,这些冰雪的主要成分是冥王星大气中的甲烷,冷凝后降到山顶上。“新视野”号项目团队科学家约翰·斯坦斯伯里在一份声明中说,这种物质只覆盖在山峰顶部,这意味着甲烷就像地球大气中的水那样,会在高纬度凝结成“冰雪”。

    冥王星存在云层

    据英国每日邮报报道,自2005年美国宇航局“新视野号”探测器首次抵达冥王星,2015年7月,该探测器再次接近冥王星轨道。新视野号探测器陆续发送冥王星冰山、冰块、陨坑,甚至积雪的图像,近期,最新图片显示冥王星有存在云层的证据。

    这项研究产生一个疑问——是否冥王星应当恢复行星地位?但是物理学家表示,这是不太可能的。美国科罗拉多州西南研究院的约翰-斯宾塞(John Spencer)指出,这些云层似乎从冥王星表面“脱颖而出”。

    该图片左侧斯普特尼克平原东南部上空有一道非常明亮的低空烟雾,图片右侧Krun Macula区域阳光照射表面存在一个离散模糊云层,但是新视野号研究小组无法证实云层的真实存在。约翰-霍普金斯大学应用物理实验室发 言人称,研究小组认为这是冥王星大气层存在的证据,其中包括复杂的阴霾,科学家继续分析和讨论输入数据,这将作为规范科学进程的一部分。

    如果冥王星存在云层,则意味着它存在着一个活跃周期,像地球水循环或者土卫六甲烷循环。这项研究产生了关于冥王星表面和大气层的新疑问,英国皇家天文学会主席马丁-巴斯托(Martin Barstow)教授说:“这是新视野号探测器飞越冥王星时令人兴奋的新发现,虽然我认为需要一些时间来理解我们所观测到的信息。”

    与地球相比,冥王星大气层更稀薄,因此是否有云层存在较大的不确定性。巴斯托说:“地球大气云层是大气层中悬浮水滴形成的,我们可能看到一个类似效应,但不一定是水,尤其当温度非常低时,或者表面释放物质形成云层,因此我们看到的区域存在更多气体,看上去比周围区域更加不透明。”

    但是物理学家强调称,即使冥王星存在某种类型的活跃周期,它并不会恢复行星身份。据悉,2006年,冥王星失去了行星身份。巴斯托指出,太阳系其它星球也存在着活跃周期,例如:土卫六(土星最大的卫星),我并不认为这项最新研究会成为恢复冥王星行星身份的有力证据。[4]

    冥王星存在地下深海

    2020年3月30日,据美国《新闻周刊》网站近日报道,美科学家对其国家航空航天局(NASA)的“新视野”号传回图像进行分析后得出结论,冥王星表面下潜藏的海洋或许与冥王星自身一样古老,且厚达150公里以上。这一研究表明,液态水在太阳系边缘可能很常见。[5]

    冥王星及其卫星系统最重要的十项科学发现

    1、冥王星及其卫星系统的复杂性大大超出了天文学家之前的预测。

    2、冥王星地表活动的剧烈程度,以及某些地区的地质构成年代之新,令科学家震惊。

    3、冥王星的大气结构比预想的更低更朦胧,其逃逸比率和之前预测的模型都不一样。

    4、卡戎赤道地区存在明显外延地质结构,显示在远古时期,这里有可能存在过冰海洋。新视野号传回的其他证据显示冥王星地表之下有可能存在内部海洋。

    5、冥王星的卫星中,能够由陨石坑确定年龄的那些均是同时诞生的,这验证了科学家的一个设想:这些卫星是在远古时期由冥王星和另一颗柯伊伯带天体发生的一次猛烈撞击中形成的。

    6、卡戎拥有一个阴暗红色的北极,这在太阳系其他已知天体中从未出现,科学家猜测这是从冥王星逃逸的大气物质重新聚集在卡戎地表形成的。

    7、“冥王星之心”所在的史波尼克平原由氮冰强烈对流形成,宽达1000公里,这也是太阳系中已知最大的冰川结构。

    8、“新视野”号证据显示,冥王星的大气存在巨大的压力差,这意味着在冥王星表面可能曾有过液体挥发现象,我们只在地球、火星和土卫六“泰坦”几颗太阳系星球上观测到这个现象。

    9、“新视野”号的拜访大大丰富了科学家们关于冥王星其它几颗小卫星的认识。

    10、冥王星的大气是蓝色的。

    “难以置信,仅仅在一年之前,我们对冥王星系统的认识竟是如此之少,”“新视野”号任务科学家赫·韦弗介绍说,“然而今天,我们认识到冥王星竟然是如此的特别,它推翻了我们之前的种种设想。更让人激动的是,它还在持续不断给我们带来惊喜的发现。”[6]

    观测与探测

    冥王星与地球的距离过于遥远,使其难以被深入研究和探索。 2015年7月14日,NASA的新视野号太空探测器飞越了冥王星系统,提供了许多信息。

    观测

    冥王星的视星等平均为15.1,在近日点增亮至13.65。要想看到它,需要大约30厘米(12英寸)口径的望远镜。冥王星看起来像星星,即使在大型望远镜中也看不到圆盘,它的角直径只有0.11秒。冥王星最早的地图是1980年代后期制作的,在冥卫一对其近距离掩食期间,通过对冥王星-冥卫一系统的总体平均亮度的变化进行观测。例如,掩盖冥王星上表面的亮区比掩盖暗区的总亮度变化更大。大量观察结果数据交由计算机处理,创建亮度地图。这种方法也可以跟踪亮度随时间的变化。更好的地图是由哈勃太空望远镜(HST)拍摄的图像生成的,有更高的分辨率并且显示更多细节,亮度变化精确到数百千米范围,包括极地地区和大的亮区。这些地图是通过复杂的计算机处理生成的,通过哈勃太空望远镜提供的像素点找到了最合适的投影。直到2015年7月新视野号飞越冥王星系统之前,这些地图仍然是冥王星最详细的地图,因为哈勃太空望远镜上用于拍摄这些照片的两个镜头已不再使用。冥王星

    探测

    新视野号飞船于2015年7月对冥王星进行了飞掠观测,这是首次也是仅有的一次直接探索冥王星的尝试。新视野号于2006年发射,2006年9月下旬,在对其搭载的远程侦察成像仪进行测试时,拍摄了冥王星的第一张遥远图像。这些图像是从约42亿千米的距离拍摄的,证实了该航天器能够追踪远距离目标的能力,这对于向冥王星和其他柯伊伯带天体的航行至关重要。 2007年初,飞船通过木星的引力弹弓效应进行加速。冥王星

    在经过3462天的飞越太阳系的旅行之后,新视野号于2015年7月14日完成对冥王星近距离的飞掠。对冥王星的科学观测始于飞掠之前五个月,并且在飞掠之后持续了至少一个月。使用包括成像仪器和无线电测量工具在内的遥感组件包进行了观察,也开展了光谱分析及其他实验。新视野号的科学目标是测量冥王星及冥卫一的全球地质和形态,绘制其表面组成,分析冥王星的中性大气及其逃逸速率。在2016年10月25日,美国东部时间下午05:48,地面从新视野号收到了冥王星系统的最后数据(总共500亿比特即6.25 GB数据)。

    自新视野号飞掠冥王星以后,科学家一直倡导执行一次新的轨道探测任务,发射新的轨道探测器到冥王星以实现新的科学目标。其中包括以每像素9.1米的精度绘制表面,观测冥王星的小卫星,观察冥王星自转轴如何变化,以及绘制因轴向倾斜而长期处于黑暗的区域的地形图。最后一个目标可以使用激光脉冲实现,生成冥王星的完整地形图。新视野号首席研究员艾伦·斯特恩(Alan Stern)提倡研制一种类似卡西尼号的轨道探测器,该轨道器将于2030年左右发射(发现冥王星100周年),到达冥王星系统后根据需要使用冥卫一的引力来调整其轨道以实现科学目标。在完成所有冥王星探测的科学目标之后,轨道探测器可以利用冥卫一的引力离开冥王星系统,并研究更多的柯伊伯带天体。由美国国家航空航天局创新先进概念(NIAC)计划资助的一项概念研究,该项目基于普林斯顿场反转结构的聚变反应堆,包括冥王星轨道探测器和着陆器冥王星

    参考资料

    [1] 冥王“心”正式命名为“汤博区” · 新浪新闻[引用日期2015-07-19]

    [2] NASA’s New Horizons Discovers Frozen Plains in the · NASA[引用日期2015-07-20]

    [3] 冥王星为何被降级 · 新浪网[引用日期2013-05-05]

    [4] 冥王星存在云层 但无法恢复其“行星身份” · 腾讯网[引用日期2016-03-14]

    [5] 冥王星也许有个与其同龄的地下深海[引用日期2020-03-31]

    展开

    相关合集

    古柏带冥族小天体

    3个词条637阅读

    冥王星

    太阳系矮行星

    冥卫一

    太阳系中的一个天体

    亡神星

    柯伊伯带的天体

    查看更多

    太阳系五大矮行星

    5个词条3063阅读

    谷神星

    太阳系中位于小行星带的矮行星

    冥王星

    太阳系矮行星

    妊神星

    柯伊伯带的矮行星

    查看更多

    相关视频

    全部

    180万次播放06:09

    冥王星很可怕么?一颗零下223℃的冰冷矮行星,或许是病毒的天堂

    简介

    112万次播放05:29

    5分钟了解高冷恐怖的冥王星,零下223℃更是病毒的天堂,生命禁区

    合集

    命名经过

    3个视频

    35万次播放07:48

    寻找太阳系中隐藏的第9行星:10倍地球质量的“X行星”

    合集

    行星X争议

    2个视频

    52万次播放03:09

    冥王星被除名九大行星之列,冥王星到底是不是行星?

    合集

    行星之辩

    2个视频

    查看更多

    内容声明

    1、本网站为开放性注册平台,以上所有展示信息均由会员自行提供,内容的真实性、准确性和合法性均由发布会员负责,本网站对此不承担任何法律责任。

    2、网站信息如涉嫌违反相关法律规定或侵权,请发邮件至599385753@qq.com删除。

    Copyright © 趣闻百科网